Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.267
Filtrar
1.
Front Immunol ; 15: 1332933, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576624

RESUMO

Introduction: Worldwide, breast cancer is the most important cancer in incidence and prevalence in women. Different risk factors interact to increase the probability of developing it. Biological agents such as helminth parasites, particularly their excretory/secretory antigens, may play a significant role in tumor development. Helminths and their antigens have been recognized as inducers or promoters of cancer due to their ability to regulate the host's immune response. Previously in our laboratory, we demonstrated that chronic infection by Toxocara canis increases the size of mammary tumors, affecting the systemic response to the parasite. However, the parasite does not invade the tumor, and we decided to study if the excretion/secretion of antigens from Toxocara canis (EST) can affect the progression of mammary tumors or the pathophysiology of cancer which is metastasis. Thus, this study aimed to determine whether excretion/secretion T. canis antigens, injected directly into the tumor, affect tumor growth and metastasis. Methods: We evaluated these parameters through the monitoring of the intra-tumoral immune response. Results: Mice injected intratumorally with EST did not show changes in the size and weight of the tumors; although the tumors showed an increased microvasculature, they did develop increased micro and macro-metastasis in the lung. The analysis of the immune tumor microenvironment revealed that EST antigens did not modulate the proportion of immune cells in the tumor, spleen, or peripheral lymph nodes. Macroscopic and microscopic analyses of the lungs showed increased metastasis in the EST-treated animals compared to controls, accompanied by an increase in VEGF systemic levels. Discussion: Thus, these findings showed that intra-tumoral injection of T. canis EST antigens promote lung metastasis through modulation of the tumor immune microenvironment.


Assuntos
Neoplasias da Mama , Parasitos , Toxocara canis , Toxocaríase , Humanos , Feminino , Animais , Camundongos , Antígenos de Helmintos , Injeções Intralesionais , Pulmão , Microambiente Tumoral
2.
Parasitol Res ; 123(4): 189, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639821

RESUMO

Toxocara canis is a parasitic zoonose that is distributed worldwide and is one of the two pathogens causing toxocariasis. After infection, it causes serious public health and safety problems, which pose significant veterinary and medical challenges. To better understand the regulatory effects of T. canis infection on the host immune cells, murine macrophages (RAW264.7) were incubated with recombinant T. canis C-type lectin 4 (rTc-CTL-4) protein in vitro. The quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to analyze the nucleotide-binding oligomerization domain-containing protein 1/2 (NOD1/2), receptor-interacting protein 2 (RIP2), nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), and mitogen-activated protein kinase (MAPK) on mRNA level and protein expression level in macrophages. Our results indicated that 10 µg/mL rTc-CTL-4 protein could modulate the expression of NOD1, NOD2, and RIP2 at both the transcriptional and translational levels. The protein translation levels of NF-κB, P-p65, p38, and P-p38 in macrophages were also modulated by rTc-CTL-4 protein. Macrophages were co-incubated with rTc-CTL-4 protein after siRNA silencing of NOD1, NOD2, and RIP2. The expression levels of NF-κB, P-p65, p38, and P-p38 were significantly changed compared with the negative control groups (Neg. Ctrl.). Taken together, rTc-CTL-4 protein seemed to act on NOD1/2-RIP2-NF-κB and MAPK signaling pathways in macrophages and might activate MAPK and NF-κB signaling pathways by regulating NOD1, NOD2, and RIP2. The insights from the above studies could contribute to our understanding of immune recognition and regulatory mechanisms of T. canis infection in the host animals.


Assuntos
NF-kappa B , Toxocara canis , Animais , Camundongos , NF-kappa B/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Toxocara canis/metabolismo , Transdução de Sinais/fisiologia , Macrófagos
3.
Rev Bras Parasitol Vet ; 33(1): e014223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511816

RESUMO

The cytokine microenvironment is crucial in generating and polarizing the immune response. A means of monitoring this environment would be of great value for better understanding Toxocara canis immune modulation. The aim of this study was to analyze the dynamics of cytokine transcription ex vivo, during early (24-48 hours) and late (15-30 days) times post-infection, in the mesenteric lymph nodes, spleen and intestinal mucosa of Balb/c mice experimentally infected with T. canis larvae. Mice in the treated group were infected with 100 third-stage larvae (L3), whereas mice in the control group were not infected. Analyses were performed at different times: 24-48 hours post-infection (HPI), 15-30 days post-infection (DPI). IL4, IL10, IL12 and Ym1 mRNA transcriptions were analyzed through qPCR. This study showed cytokine transcription mediated by migrating larvae in the mesenteric lymph nodes and spleen at 24-48 HPI, whereas cytokine transcription in the intestinal mucosa was observed only at late times (15-30 DPI). These results suggest that the T. canis larvae migration during infection might play a role in cytokine dynamics. Since the cytokine microenvironment is crucial in modulating immune response, knowledge of cytokine dynamics during T. canis infections pave the way to better understand its interaction with the host.


Assuntos
Doenças dos Roedores , Toxocara canis , Toxocaríase , Animais , Camundongos , Citocinas , Camundongos Endogâmicos BALB C , Baço
4.
Front Biosci (Landmark Ed) ; 29(3): 124, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38538283

RESUMO

BACKGROUND: Toxocara canis (T. canis) is a helminth parasite of zoonotic and veterinary health significance that causes the disease known as Toxocariasis. This disease has been associated with conditions of poverty, especially in tropical climate zones throughout the world. Although it rarely causes important clinical manifestations, T. canis can lead to blindness, meningoencephalitis, or other nervous manifestations in humans. Moreover, some studies show its importance in the development of tumor growth, which have been associated with the parasite's ability to modulate the host's immune response. While different studies have evaluated the immune response during this disease, currently, there are no studies where the infection is analyzed from the perspective of sexual dimorphism. METHODS: To evaluate sex differences in susceptibility, we analyzed lesions and parasite loads in lung and liver at 7 days post-infection. In addition, immune cell subpopulations were analyzed in spleen, mesenteric and peripheral lymph nodes. Finally, the production of cytokines and specific antibodies were determined in the serum. Statical analyses were performed using a Two-way ANOVA and a post-hoc Bonferroni multiple comparison test. RESULTS: Female rats had a higher number of larvae in the liver, while male rats had them in the lungs. The percentages of immune cells were evaluated, and in most cases, no significant differences were observed. Regarding the cytokines production, infection can generate a decrease in Th1 such as IL-1ß in both sexes and IL-6 only in females. In the case of Th2, IL-4 increases only in infected males and IL-5 increases in males while decreasing in females due to the effect of infection. IL-10 also decreases in both sexes as a consequence of the infection, and TGF-ß only in females. Finally, the infection generates the production of antibodies against the parasite, however, their quantity is lower in females. CONCLUSIONS: This study demonstrates that T. canis infection is dimorphic and affects females more than males. This is due to a polarization of the inadequate immune response, which is reflected as a higher parasite load in this sex.


Assuntos
Toxocara canis , Toxocaríase , Humanos , Feminino , Ratos , Masculino , Animais , Toxocaríase/parasitologia , Toxocaríase/patologia , Toxocara canis/fisiologia , Caracteres Sexuais , Citocinas , Imunidade
5.
Parasitol Res ; 123(3): 162, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492070

RESUMO

Toxocara canis (T. canis) is a gastrointestinal nematode in dogs, and its larvae also infect humans, causing severe larval migratory disease. Anthelmintic drugs have become the primary means to combat T. canis. In this study, the efficacy of nitazoxanide (NTZ) was tested against all the internal stages of T. canis, including L3 larval stage in vitro experiments and gastrointestinal worm in vivo experiments. In the in vitro experiment, after treatment with NTZ at 7.81 and 62.5 µg/mL for 12 h, the larval mortality efficacy reached 90.0 and 100.0%, respectively. In the in vivo experiments, 100 mg/kg NTZ possessed good anthelmintic efficacy against T. canis, with an egg per gram (EPG) reduction of 99.19%, and 90.00% of dogs cleared with residual worms. These results were comparable to those of the positive control drug. The highest anthelmintic efficacy was observed in the group treated with 150 mg/kg NTZ. Based on faecal egg counts, the number of T. canis eggs decreased by 100.00%, and the percentage of dogs cleared with residual worms achieved 90.00% after 7 days of treatment in the 150-mg/kg NTZ treatment group. In general, NTZ showed great potential to be applied as an anthelmintic against T. canis.


Assuntos
Anti-Helmínticos , Doenças do Cão , Toxocara canis , Toxocaríase , Humanos , Animais , Cães , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Nitrocompostos/uso terapêutico , Tiazóis/uso terapêutico , Toxocaríase/tratamento farmacológico , Doenças do Cão/tratamento farmacológico , Contagem de Ovos de Parasitas/veterinária
6.
Parasit Vectors ; 17(1): 85, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395932

RESUMO

Human ocular toxocariasis (OT), caused by pet roundworm Toxocara canis (Nematoda Ascaridoidea), is a worldwide ocular parasitic infection that poses a severe threat to eyesight, especially in school-aged children. However, the infection process and pathological mechanism of Toxocara are difficult to study in the human body. This study was designed to explore long-term ocular manifestations in different rodents infected with Toxocara canis, uncovering the specific pathological mechanism and migration pathway of larvae after infection. The three types of experimental animals we selected were C57BL/6 mice, Mongolian gerbils and Brown Norway rats. Mice were randomly divided into five groups and infected orally with 1000, 2000, 4000, 8000 and 10,000 T. canis eggs; gerbils were randomly divided into four groups and infected orally with 1000, 2000, 4000 and 10,000 T. canis eggs; rats were randomly divided into three groups and infected orally with 2000, 6000 and 10,000 T. canis eggs. Their ocular changes were closely observed and recorded for at least 2 months. We also enucleated the eyeballs of some animals to perform pathological sectioning and hematoxylin-eosin staining. After 3 dpi (days post-infection), hemorrhagic lesions, mechanical injury of the retina and larval migration could be observed in some infected animals. The ocular infection and mortality rates tended to be stable at 7 dpi. Larval tissue, structure disorder and inflammation could be observed in the pathological sections. In conclusion, the mice infected with 2000 T. canis eggs and gerbils infected with 1000, 2000 and 4000 T. canis eggs showing obvious ocular lesions and lower mortality rates could provide a basis for long-term observation.


Assuntos
Infecções Oculares , Toxocara canis , Toxocaríase , Humanos , Criança , Animais , Camundongos , Ratos , Toxocaríase/parasitologia , Gerbillinae/parasitologia , Camundongos Endogâmicos C57BL , Toxocara , Larva
7.
Parasitol Res ; 123(2): 133, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358454

RESUMO

Toxocara canis is a globally distributed zoonotic parasite. The parasite has recently become a concern for public health in Vietnam. This cross-sectional study aimed to identify and quantify the risk factors associated with T. canis infection in dogs in Dak Lak province in the Central Highlands of Vietnam. The risk factors were identified using a mixed-effects logistic regression model and quantified using population attributable fractions. Examination of fecal samples collected from 1455 dogs using the sodium nitrate flotation technique showed 37.32% (95% CI: 34.83-39.86) of dogs infected with T. canis. The factors, including study location, multiple dogs living in a household, dog age, dog breed, and places keeping dogs were associated with a dog's likelihood of being T. canis infection. The household and individual dog levels contributed 17% and 82%, respectively, to the prevalence of T. canis in dogs. The adjusted population attributable fraction for confining dogs and raising an individual dog per household was 52% and 27%, respectively. The result of this study indicated that to minimize the burden of T. canis, intervention measures should target individual dogs and household levels.


Assuntos
Canidae , Toxocara canis , Cães , Animais , Estudos Transversais , Prevalência , Vietnã/epidemiologia , Fatores de Risco
8.
Acta Trop ; 252: 107140, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341054

RESUMO

Toxocariasis is an important zoonotic parasitic disease. Toxocaris canis adults live and reproduce in the intestinal tract of dogs and other canine hosts, and the infectious eggs are continuously excreted in feces, which causes environmental contamination and has an important public health significance. In this study, TMT proteomic and untargeted metabolomic methods were used to explore the physiological and pathological effects on the intestinal tract of dogs which infected with T. canis, and a series of bioinformatics analyses were conducted to identify differentially expressed proteins (DEPs) and differentially expressed metabolites (DEMs). The proteomics results showed that 198 DEPs were mainly enriched in the immune system and signal transduction pathway, and involved in the regulation of the occurrence and development of cancer and infectious diseases. T. canis could disrupt intestinal permeability by increasing the expression of proteins such as zinc finger protein DZIP1L and myosin heavy chain 10. Additionally, T. canis infection could also inhibit the host immune response by decreasing the expression of MHC-II, NF-κB, DLA and other immune-related molecules. While, the metabolomics results revealed that the expression of oxoglutaric acid, glutamate, d-aspartate, arginine, taurochenodeoxycholic acid and taurocholic acid which participated in tricarboxylic acid (TCA) cycle, glycolysis/gluconeogenesis, bile secretion, biosynthesis of amino acids pathway were significantly decreased. The correlation results of proteomics and metabolomics showed that DEPs and DEMs were mainly co-enriched in bile secretion pathway to regulate intestinal peristalsis. Analyzing DEPs and DEMs will not only provide insights into the mechanisms of host parasite interaction, but also aid in identifying potential targets for therapy and diagnosis, thus setting the groundwork for effectively preventing and managing toxocariasis.


Assuntos
Doenças do Cão , Toxocara canis , Toxocaríase , Animais , Cães , Proteômica , Doenças do Cão/epidemiologia , Zoonoses , Intestinos
9.
Exp Parasitol ; 258: 108720, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367945

RESUMO

Human toxocariasis is a parasitic anthropozoonosis that is difficult to treat and control. A previous study carried out with Lactobacillus acidophilus ATCC 4356 revealed that the cell free supernatant (CFS) of this probiotic killed 100% of Toxocara canis larvae in vitro. The present study aimed to investigate the characteristics of the CFS of L. acidophilus ATCC 4356, which may be involved in its larvicidal effects on T. canis. L. acidophilus ATCC 4356 was cultured, and lactic and acetic acids present in the CFS were quantified by high performance liquid chromatography (HPLC). The levels of pH and H2O2 were also analyzed. To assess the larvicidal effect of the CFS, this was tested pure and diluted (1:2 to 1:128) on T. canis larvae. High concentrations of lactic and acetic acids were detected in the CFS. The acidity of the pure CFS was observed at pH 3.8, remaining acidic at dilutions of 1:2 to 1:16. Regarding the in vitro larvicidal effect, 100% death of T. canis larvae was observed using the pure CFS and 1:2 dilution. Based on these results, it can be inferred that the presence of higher concentrations of organic acids and low pH of the medium contributed to the larvicidal activity of the CFS of L. acidophilus ATCC 4356. In addition, the maintenance of the larvicidal effect, even after dilution, suggests a greater chance of the larvicidal effect of this CFS against T. canis in vivo.


Assuntos
Probióticos , Toxocara canis , Toxocaríase , Animais , Humanos , Lactobacillus acidophilus/metabolismo , Peróxido de Hidrogênio/farmacologia , Toxocaríase/parasitologia , Larva , Acetatos/metabolismo , Acetatos/farmacologia
10.
Eur J Clin Microbiol Infect Dis ; 43(3): 587-596, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38261158

RESUMO

BACKGROUND: Over a billion people are infected with Toxocara canis or T. cati, the roundworms of dogs and cats. Historically, T. canis has been considered the main species responsible for human toxocarosis, but as serodiagnosis cannot discriminate between the two species, this remains unresolved. We used pigs as a relevant large animal model for human infection to assess the migratory pattern of T. cati and T. canis. METHODS: Pigs were inoculated with T. cati or T. canis eggs or PBS (negative controls) and necropsied 14 or 31 days later. Different organs and tissues were examined for parasites and pathological changes. RESULTS: Overall, the two parasite species had a similar migration pattern reaching multiple organs and tissues, including the mesenteric lymph nodes, liver, lungs, and diaphragm. We recovered larvae of both species in the brain, suggesting that T. cati also can cause neurological toxocarosis in humans. Both species induced systemic eosinophilia and histopathological changes in the lungs, livers, and mesenteric lymph nodes. CONCLUSION: This study emphasises the importance of T. cati as a zoonotic agent and the need to develop diagnostic methods that can differentiate between sources of infection in humans.


Assuntos
Toxocara canis , Toxocaríase , Animais , Humanos , Suínos , Toxocara , Toxocaríase/diagnóstico , Toxocaríase/parasitologia , Toxocaríase/patologia
11.
Rev Bras Parasitol Vet ; 32(4): e012723, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055439

RESUMO

The coproparasitological examination of dogs (n=278) from two Brazilian biomes (Amazon [AZ] and Atlantic Forest [AF]) by centrifugal flotation demonstrated positivity values of 54.2% (AF) and 48.5% (AZ). The most prevalent parasites in AF were hookworms (81.0% - 47/58), Toxocara sp. (17.3% - 10/58) and Trichuris vulpis (12.1% - 7/58); while in AZ they were hookworms (86.7% - 72/83), Toxocara sp. (18.1% - 15/83), Dipylidium caninum (13.3% - 11/83) and T. vulpis (10.8% - 9/83). PCR was performed using the partial mitochondrial genes cytochrome c oxidase subunit 1 (pcox1) and NADH dehydrogenase 1 (pnad1) in 25 fecal samples positive for Toxocara sp. eggs and found one sample positive for pcox1 and six positives for pnad1. The sequencing of these samples was unsuccessful due to the difficulties inherent in copro-PCR+sequencing. The sequencing of 14 samples of T. canis adult helminths retrieved 11 sequences of 414 bp for pcox1 and nine sequences of 358 bp for pnad1. The phylogenetic trees of these sequences confirmed the species T. canis. Intraspecific genetic variation was only observed for pnad1. This is the second study involving molecular analysis of T. canis in dogs from Brazil and adds new information through the use of pnad1.


Assuntos
Doenças do Cão , Helmintos , Toxocara canis , Animais , Cães , Toxocara canis/genética , Brasil , Filogenia , Ecossistema , Florestas , Doenças do Cão/diagnóstico , Doenças do Cão/parasitologia , Fezes/parasitologia , Prevalência
12.
Parasit Vectors ; 16(1): 462, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115028

RESUMO

BACKGROUND: Toxocara canis is a roundworm that resides in the gastrointestinal tract of dogs and causes various pathological changes. The dog's intestinal system consists of a diverse and dynamic bacterial community that has extensive effects on intestinal physiology, immunity and metabolics. In the case of intestinal parasites, interactions with the host intestinal flora are inevitable during the process of parasitism. METHODS: We studied the role of T. canis in regulating the composition and diversity of the intestinal flora of the host by high-throughput sequencing of the 16S ribosomal RNA gene and various bioinformatics analyses. RESULTS: The α-diversity analysis showed that Toxocara canis infection resulted in a significant decrease in the abundance and diversity of host intestinal flora. The ß-diversity analysis showed that the intestinal flora of infected dogs was similar to that carried by T. canis. Analysis of the microflora composition and differences at the phylum level showed that the ratio of Firmicutes to Bacteroidetes (F/B ratio) increased with T. canis infection. Analysis of species composition and differences at the genus level revealed that the proportion of some of the pathogenic bacteria, such as Clostridium sensu stricto and Staphylococcus, increased after T. canis infection. CONCLUSIONS: Toxocara canis infection affected the composition and diversity of the flora in the host intestinal tract. These results not only shed light on the potential mechanism of T. canis invasion and long-term survival in the intestinal tract, but also provide a new basis for the development of anthelmintic drugs.


Assuntos
Canidae , Doenças do Cão , Microbioma Gastrointestinal , Toxocara canis , Toxocaríase , Animais , Cães , Toxocara canis/genética , Toxocaríase/parasitologia , RNA Ribossômico 16S/genética , Bactérias/genética , Doenças do Cão/parasitologia
13.
PLoS Negl Trop Dis ; 17(10): e0011665, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37878585

RESUMO

BACKGROUND: Toxocara canis is a cosmopolitan parasite of dogs that is transmitted transplacentally to puppies resulting in widespread shedding of eggs in the environment. However, it is not clear if there are dominant parasite genotypes that are more common, pathogenic, or likely to be zoonotic. METHODS/PRINCIPLE FINDINGS: Sequences of mitochondrial cox1 gene from adult worms were used to compare parasites from the United States with submitted sequences from parasites isolated from dogs in different countries. Our analysis revealed at least 55 haplotypes. While we expected the North American worms to form a distinct cluster, we found haplotypes of T. canis reported elsewhere existing in this population. Interestingly, combining the sequence data from our study with the available GenBank data, analysis of cox1 sequences results in five distinct clades that are not geographically defined. CONCLUSIONS: The five clades of T. canis revealed in this study potentially have unique life histories, traits, or host preferences. Additional investigation is needed to see if these distinct clades represent cryptic species with clinically useful attributes or genotypes with taxonomic value. Evaluation of common mitochondrial genes may reveal distinct populations of zoonotic T. canis.


Assuntos
Canidae , Doenças do Cão , Toxocara canis , Toxocaríase , Animais , Cães , Toxocara canis/genética , Haplótipos , Toxocaríase/epidemiologia , Doenças do Cão/parasitologia
14.
Parasitol Res ; 122(12): 3213-3231, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37874393

RESUMO

There are currently insufficient anthelmintic medications available for the treatment of toxocariasis. For instance, Albendazole (ABZ) is the preferred medication, but its effectiveness against tissue-dwelling parasites is limited. In addition, Metformin (MTF) is a widely used oral antidiabetic medication that is considered to be safe for treatment. This study aimed to investigate any potential effects of MTF, alone or in combination with ABZ, on mice infections caused by Toxocara canis (T. canis). The efficacy of the treatment was assessed in the acute and chronic phases of the infection by larval recovery and histopathological, immunohistochemical, and biochemical studies. The results showed that combined therapy significantly reduced larval counts in the liver, brain, and muscles and ameliorated hepatic and brain pathology. It reduced oxidative stress and TGF-ß mRNA expression and increased FGF21 levels in the liver. It decreased TNF-α levels and MMP-9 expression in the brain. In addition, it increased serum levels of IL-12 and IFN-γ and decreased serum levels of IL-4 and IL-10. In the acute and chronic phases of the infection, the combined treatment was more effective than ABZ alone. In conclusion, this study highlights the potential role of MTF as an adjuvant in the treatment of experimental T. canis infection when administered with ABZ.


Assuntos
Metformina , Toxocara canis , Toxocaríase , Camundongos , Animais , Toxocaríase/tratamento farmacológico , Toxocaríase/parasitologia , Metformina/farmacologia , Metformina/uso terapêutico , Albendazol/farmacologia , Albendazol/uso terapêutico , Encéfalo/patologia , Fígado/patologia
15.
J Korean Med Sci ; 38(39): e323, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37821089

RESUMO

Toxocariasis is a zoonotic disease caused by ingesting eggs from soil contaminated with Toxocara canis and Toxocara cati, commonly found in feces of infected dogs and cats, leading to a range of clinical symptoms including fever, abdominal pain and gastrointestinal manifestations. Fascioliasis is also a zoonotic disease caused by liver flukes Fasciola hepatica and Fasciola gigantica, which can be contracted through consumption of contaminated water or aquatic plants, leading to various clinical features. Here, we report a case of a 39-year-old woman diagnosed with a liver abscess caused by co-infection of T. canis and F. hepatica, as confirmed by serological tests. Although the existence of a pet dog and an experience of eating raw water dropwort are potential clues for diagnosis, it cannot be determined as the source of infection because the source of infection has not been clearly identified. After administrating albendazole and triclabendazole sequentially, the patient showed improvement in blood test and imaging findings. Clinicians should be aware of parasitic co-infection and take appropriate management.


Assuntos
Doenças do Gato , Coinfecção , Doenças do Cão , Fasciola hepatica , Fasciolíase , Abscesso Hepático , Toxocara canis , Feminino , Humanos , Animais , Cães , Gatos , Adulto , Fasciolíase/complicações , Fasciolíase/diagnóstico , Fasciolíase/tratamento farmacológico , Coinfecção/diagnóstico , Doenças do Cão/parasitologia , Zoonoses/diagnóstico , Abscesso Hepático/complicações , Abscesso Hepático/diagnóstico
16.
Vet Med Sci ; 9(6): 2475-2484, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37772411

RESUMO

BACKGROUND: Dogs are the most popular pet animals worldwide, and their frequent and close contact with humans poses an increased risk of zoonotic parasite transmission. Toxocara canis infection is a highly pervasive and economically significant zoonotic infection transmitted by dogs worldwide, commonly in tropical and subtropical regions, particularly in developing countries. OBJECTIVES: This study evaluates the epidemiological profile and associated risk factors of T. canis exposure among humans and T. canis infection in domestic dogs in two climatically different governorates in Egypt. METHODS: Faecal samples from 360 domiciled dogs were examined using the flotation technique to detect T. canis eggs. In addition, 276 human serum samples were evaluated by enzyme-linked immunosorbent assay over a period of 10 months from May 2021 to February 2022 in the Alexandria and Qena Governorates, Egypt. RESULTS: Shedding of T. canis was identified in 33.33% (120/360) of dogs and the overall seroprevalence in the human population was 20.65% (57/276). Lower Egypt, represented by the Alexandria Governorate, had higher canine infection (39.47%) and human seropositivity (29.87%) rates than those of Upper Egypt, represented by Qena Governorate (26.47% and 9.02% in dogs and humans, respectively). Statistical analysis of the sociodemographic characteristics of the participants revealed that handwashing, washing of vegetables and fruits and sex were associated with human T. canis exposure. CONCLUSION: The prevalence rates of confirmed T. canis infection in the Egyptian dogs population and the associated human seropositivity rates reflect its importance as a public health concern and support the call to increase public awareness of this issue. The risk factors identified in this study can contribute to the development of more effective control and prevention strategies.


Assuntos
Toxocara canis , Humanos , Animais , Cães , Egito/epidemiologia , Estudos Soroepidemiológicos , Prevalência , Fatores de Risco
17.
Zoonoses Public Health ; 70(7): 616-626, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37381108

RESUMO

Toxocariasis is an important zoonotic disease caused by Toxocara (T.) canis with considerably higher prevalence in developing countries. The data on its epidemiology, especially in socioeconomically deprived nomadic communities, are scarce in Pakistan. Therefore, this study was conducted to determine the prevalence of anti-T. canis antibodies and its associated risk factors in nomadic communities located in and around Multan, Pakistan. A total of 184 sera samples were collected from nomadic communities by simple random sampling technique. The descriptive epidemiological data of participants were collected on well-designed questionnaires. Prior consent was also obtained from the participants to use the data generated from their samples without showing their identity. All the samples were analysed for the detection of anti-T. canis antibodies using commercially available Enzyme-Linked-Immunosorbent-Assay (ELISA) kits having 91% sensitivity and 96% specificity (Bordier Affinity Products, Switzerland). The overall seroprevalence of toxocariasis among nomadic communities was 27.7% (51/184). Various factors, including age, known disease history, nutritional status, contact with dogs, practice of hand washing after contact with dogs, use of unwashed vegetables, body mass index, and drug abuse, showed significant correlation (p < 0.05) with toxocariasis in nomadic communities. Conversely, other factors, including gender, marital status, educational status, awareness about zoonotic diseases, source of drinking water, occupation, location, hand washing before taking food, exposure to soil, and hygienic eating behaviour, showed non-significant correlation (p > 0.05) with seroprevalence of toxocariasis. Results also showed that >50% of seropositive cases were asymptomatic, whereas cough and abdominal pain were recorded in 19.6% and 11.76% of seropositive cases, respectively. Keeping in view, it is suggested to conduct surveys at mass level to rule out the exact disease status at national level and to include nomadic communities in local, national, and regional disease control programs through provision of better healthcare facilities and awareness about the disease.


Assuntos
Doenças do Cão , Toxocara canis , Toxocaríase , Animais , Cães , Toxocaríase/epidemiologia , Prevalência , Estudos Soroepidemiológicos , Paquistão/epidemiologia , Zoonoses/epidemiologia , Fatores de Risco , Ensaio de Imunoadsorção Enzimática/veterinária , Anticorpos Anti-Helmínticos
18.
Parasitol Res ; 122(6): 1327-1332, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37046027

RESUMO

Toxocara tanuki is a common large roundworm in raccoon dogs. Experimental infection studies of T. tanuki in mice were conducted to clarify the distribution and infectivity of larvae in tissue. Groups of BALB/c and C57BL/6 mice (n = 5 mice/group) were each inoculated with 1000 embryonated T. tanuki eggs and necropsied at 7, 31, 91, and 182 days post inoculation (dpi). The number of larvae in the central nervous system, heart, lungs, kidneys, spleen, gastrointestinal tract, liver, and carcass was examined. Larvae obtained from the aforementioned mice on different days of the necropsy were orally inoculated into four groups of ICR mice (n = 6 mice/group) that were then necropsied at 21 dpi. Larvae were recovered from all mice. In the BALB/c and C57BL/6 mice, most of the larvae (> 88.7%) were recovered from the liver and the remainder from other tissues. The total number of larvae recovered from C57BL/6 mice was significantly higher than that from BALB/c mice, but no difference in the relative larval distribution within the viscera between the two mouse strains was observed. The mean recovery percentage of larvae from ICR mice infected with 182-day-old tissue larvae was 3.3%. Our findings showed that T. tanuki larvae migrated predominantly to the liver of mice and that the larvae maintained their infectivity for at least half a year.


Assuntos
Toxocara canis , Toxocaríase , Animais , Camundongos , Toxocara , Larva/fisiologia , Camundongos Endogâmicos ICR , Camundongos Endogâmicos C57BL , Pulmão , Fígado , Toxocara canis/fisiologia
19.
Sci Rep ; 13(1): 4971, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973306

RESUMO

Toxocara canis has a complex lifecycle including larval stages in the somatic tissue of dogs that tolerate macrocyclic lactones. In this study, we investigated T. canis permeability glycoproteins (P-gps, ABCB1) with a putative role in drug tolerance. Motility experiments demonstrated that while ivermectin failed to abrogate larval movement, the combination of ivermectin and the P-gp inhibitor verapamil induced larval paralysis. Whole organism assays revealed functional P-gp activity in larvae which were capable of effluxing the P-gp substrate Hoechst 33342 (H33342). Further investigation of H33342 efflux demonstrated a unique rank order of potency for known mammalian P-gp inhibitors, suggesting that one or more of the T. canis transporters has nematode-specific pharmacological properties. Analysis of the T. canis draft genome resulted in the identification of 13 annotated P-gp genes, enabling revision of predicted gene names and identification of putative paralogs. Quantitative PCR was used to measure P-gp mRNA expression in adult worms, hatched larvae, and somatic larvae. At least 10 of the predicted genes were expressed in adults and hatched larvae, and at least 8 were expressed in somatic larvae. However, treatment of larvae with macrocyclic lactones failed to significantly increase P-gp expression as measured by qPCR. Further studies are needed to understand the role of individual P-gps with possible contributions to macrocyclic lactone tolerance in T. canis.


Assuntos
Toxocara canis , Animais , Cães , Toxocara canis/metabolismo , Ivermectina/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Lactonas/metabolismo , Larva/metabolismo , Mamíferos/metabolismo
20.
Parasit Vectors ; 16(1): 114, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991462

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) play crucial roles in regulating various physiological and pathological processes. However, the role of lncRNAs and mRNAs in mediating the liver response during Toxocara canis infection remains incompletely understood. METHODS: In the present study, the expression profile of lncRNAs and mRNAs was investigated in the liver of Beagle dogs infected by T. canis using high-throughput RNA sequencing. RESULTS: Compared with the control groups, 876 differentially expressed (DE) lncRNAs and 288 DEmRNAs were identified at 12 h post-infection (hpi), 906 DElncRNAs and 261 DEmRNAs were identified at 24 hpi, and 876 DElncRNAs and 302 DEmRNAs were identified at 36 days post-infection (dpi). A total of 16 DEmRNAs (e.g. dpp4, crp and gnas) were commonly identified at the three infection stages. Enrichment and co-localization analyses identified several pathways involved in immune and inflammatory responses during T. canis infection. Some novel DElncRNAs, such as LNC_015756, LNC_011050 and LNC_011052, were also associated with immune and inflammatory responses. Also, LNC_005105 and LNC_005401 were associated with the secretion of anti-inflammatory cytokines, which may play a role in the healing of liver pathology at the late stage of infection. CONCLUSIONS: Our data provided new insight into the regulatory roles of lncRNAs and mRNAs in the pathogenesis of T. canis and improved our understanding of the contribution of lncRNAs and mRNAs to the immune and inflammatory response of the liver during T. canis infection.


Assuntos
Canidae , RNA Longo não Codificante , Toxocara canis , Toxocaríase , Cães , Animais , RNA Longo não Codificante/genética , Toxocara canis/genética , Toxocara canis/metabolismo , Perfilação da Expressão Gênica , RNA Mensageiro/metabolismo , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...